Respuesta :
So the problems ask to find and calculate the exact value of the trigonometric equation in the following equations and the best answers would be the following:
#1. sqrt(3)/3
#2. Arcsine of zero is 0
#3. x/sqrt(4-x^2)
I hope you are satisfied with my answer and feel free to ask for more if you have questions and further clarifications. Have a nice day
#1. sqrt(3)/3
#2. Arcsine of zero is 0
#3. x/sqrt(4-x^2)
I hope you are satisfied with my answer and feel free to ask for more if you have questions and further clarifications. Have a nice day
Answer and Explanation :
1) Expression [tex]\cot[\cot^{-1}(\frac{\sqrt{3}}{3})][/tex]
We have to find the exact solution of the expression.
We know the inverse property,
[tex]\cot[\cot^{-1}x]=x[/tex]
Applying the property,
[tex]\cot[\cot^{-1}(\frac{\sqrt{3}}{3})]=\frac{\sqrt{3}}{3}[/tex]
Therefore, The exact solution is [tex]\cot[\cot^{-1}(\frac{\sqrt{3}}{3})]=\frac{\sqrt{3}}{3}[/tex]
2) Expression [tex]\sin^{-1][\cos(\frac{\pi}{2})][/tex]
We have to find the exact solution of the expression.
We know that,
[tex]\cos(\frac{\pi}{2})=0[/tex]
[tex]\sin(0)=0[/tex]
Applying the property,
[tex]\sin^{-1][\cos(\frac{\pi}{2})]=\sin^{-1}[0][/tex]
[tex]\sin^{-1][\cos(\frac{\pi}{2})]=\sin^{-1}[\sin(0)][/tex]
Applying inverse property,
[tex]\sin^{-1}[\sin x]=x[/tex]
[tex]\sin^{-1][\cos(\frac{\pi}{2})]=0[/tex]
Therefore, The exact solution is [tex]\sin^{-1][\cos(\frac{\pi}{2})]=0[/tex]
3) Expression [tex]\tan(\sin^{-1}(\frac{x}{2}))[/tex]
We have to find the exact solution of the expression.
Let [tex]\sin^{-1}(\frac{x}{2})=y[/tex]
i.e. [tex]\sin y=\frac{x}{2}[/tex]
Squaring both side, [tex]\sin^2 y=\frac{x^2}{4}[/tex]
Now, The expression became [tex]\tan(y)[/tex]
We can write tan in form of sin and cosine as
[tex]\tan y=\frac{\sin y}{\cos y}[/tex]
We know, [tex]\cos y=\sqrt{1-\sin^2 y}[/tex]
Substituting,
[tex]\tan y=\frac{\sin y}{\sqrt{1-\sin^2 y}}[/tex]
Now, put the value of sin y
[tex]\tan y=\frac{\frac{x}{2}}{\sqrt{1-\frac{x^2}{4}}}[/tex]
[tex]\tan y=\frac{\frac{x}{2}}{\sqrt{\frac{4-x^2}{4}}}[/tex]
[tex]\tan y=\frac{\frac{x}{2}}{\frac{\sqrt{4-x^2}}{2}}[/tex]
[tex]\tan y=\frac{x}{\sqrt{4-x^2}}[/tex]
Therefore, The exact solution is [tex]\tan(\sin^{-1}(\frac{x}{2}))=\frac{x}{\sqrt{4-x^2}}[/tex]