Respuesta :
Part 1)
we have
[tex]3x-6y=3[/tex] ------> equation A
[tex]7x-5y=-11[/tex] ------> equation B
Multiply by [tex]-7[/tex] the equation A
[tex]-7(3x-6y)=-7*3[/tex]
[tex]-21x+42y=-21[/tex] ------> equation C
Multiply by [tex]3[/tex] the equation B
[tex]3*(7x-5y)=-11*3[/tex]
[tex]21x-15y=-33[/tex] -------> equation D
Adds equation C and equation D
[tex]-21x+42y=-21 \\21x-15y=-33\\---------- \\ 42y-15y=-21-33\\27y=-54 \\ y=-2[/tex]
therefore
the answer Part 1) is the option A
[tex]y=-2[/tex]
Part 2)
we have
[tex]3x+y=6[/tex]
[tex]y=-3x+6[/tex] ------> equation A
[tex]6x+2y=8[/tex]
Simplify Divide by [tex]2[/tex] both sides
[tex]3x+y=4[/tex]
[tex]y=-3x+4[/tex] ------> equation B
the lines A and B are parallel lines, because the slope m is equal
so
The system has no solution
therefore
the answer Part 2) is the option D
There is no x value as there is no solution to the system.
Part 3)
we have
[tex]4x+2y=6[/tex] ------> equation A
[tex]x-y=3[/tex]
[tex]y=x-3[/tex] ------> equation B
substitute equation B in equation A
[tex]4x+2[x-3]=6[/tex]
[tex]6x-6=6[/tex]
[tex]6x=12[/tex]
[tex]x=2[/tex]
therefore
the answer part 3) is the option D
[tex]x=2[/tex]
Part 4)
Let
x---------> The number of one-step equations
y---------> The number of two-step equations
we know that
[tex]x+y=1,120[/tex]
[tex]x=1,120-y[/tex] -------> equation A
[tex]3x-2y=1,300[/tex] ------> equation B
substitute equation A in equation B
[tex]3[1,120-y]-2y=1,300[/tex]
[tex]3,360-5y=1,300[/tex]
[tex]5y=3,360-1,300[/tex]
[tex]5y=2,060[/tex]
[tex]y=412[/tex]
therefore
the answer part 4) is the option D
[tex]y=412[/tex]