A solid block of mass m is suspended in a liquid by a thread. The density of the block is greater than that of the liquid. Initially, the fluid level is such that the block is at a depth d and the tension in the thread is T. Then, the fluid level is decreased such that the depth is 0.5d. What is the tension in the thread when the block is at the new depth?

Respuesta :

Answer:

(C) T

The tension T at equilibrium will be equal to the Buoyant force.

The Buoyant force is given by:

Fb = density x acceleration due to gravity x volume displaced

The change in height doesn't affect the Buoyant force and hence the tension.

Note: The figure of question is added in the attachment

Ver imagen sahir9397

The tension in the thread when the block is at the new depth is :

(C) T

Buoyant force

The definition of buoyancy refers to whether something can drift in water or discuss, or the control of water or other fluids to keep water above water, or an idealistic disposition.

The tension T at equilibrium will be equal to the Buoyant force.

The Buoyant force is given by:

Fb = density x acceleration due to gravity x volume displaced

The change in height doesn't affect the Buoyant force and hence, the tension.

Learn more about "Buoyant Force":

https://brainly.com/question/17108937?referrer=searchResults

Ver imagen Sam1s
ACCESS MORE
EDU ACCESS