Answer:
229.23 feet.
Step-by-step explanation:
The pictorial representation of the problem is attached herewith.
Our goal is to determine the height, h of the tree in the right triangle given.
In Triangle BOH
[tex]Tan 60^0=\dfrac{h}{x}\\h=xTan 60^0[/tex]
Similarly, In Triangle BOL
[tex]Tan 50^0=\dfrac{h}{x+60}\\h=(x+60)Tan 50^0[/tex]
Equating the Value of h
[tex]xTan 60^0=(x+60)Tan 50^0\\xTan 60^0=xTan 50^0+60Tan 50^0\\xTan 60^0-xTan 50^0=60Tan 50^0\\x(Tan 60^0-Tan 50^0)=60Tan 50^0\\x=\dfrac{60Tan 50^0}{Tan 60^0-Tan 50^0} ft[/tex]
Since we have found the value of x, we can now determine the height, h of the tree.
[tex]h=\left(\dfrac{60Tan 50^0}{Tan 60^0-Tan 50^0}\right)\cdotTan 60^0\\h=229.23 feet[/tex]
The height of the tree is 229.23 feet.