Respuesta :
Answer:
95% confidence interval for the percentage of all U.S. public high school students who are obese is [0.110 , 0.190].
Step-by-step explanation:
We are given that 15% of a random sample of 300 U.S. public high school students were obese.
Firstly, the pivotal quantity for 95% confidence interval for the population proportion is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample % of U.S. public high school students who were obese = 15%
n = sample of U.S. public high school students = 300
p = population percentage of all U.S. public high school students
Here for constructing 95% confidence interval we have used One-sample z proportion statistics.
So, 95% confidence interval for the population proportion, p is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95
P( [tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.95
95% confidence interval for p = [[tex]\hat p-1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+1.96 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex]]
= [ [tex]0.15-1.96 \times {\sqrt{\frac{0.15(1-0.15)}{300} } }[/tex] , [tex]0.15+1.96 \times {\sqrt{\frac{0.15(1-0.15)}{300} } }[/tex] ]
= [0.110 , 0.190]
Therefore, 95% confidence interval for the percentage of all U.S. public high school students who are obese is [0.110 , 0.190].
