Answer:
a) [tex]\Delta U_{g} = 12.945\,J[/tex], b) [tex]\Delta U_{k} = 12.945\,J[/tex], c) [tex]k = 2930.059\,\frac{N}{m}[/tex]
Explanation:
a) The change in the gravitational potential energy of the marble-Earth system is:
[tex]\Delta U_{g} = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}}\right)\cdot (22\,m)[/tex]
[tex]\Delta U_{g} = 12.945\,J[/tex]
b) The change in the elastic potential energy of the spring is equal to the change in the gravitational potential energy, then:
[tex]\Delta U_{k} = 12.945\,J[/tex]
c) The spring constant of the gun is:
[tex]\Delta U_{k} = \frac{1}{2} \cdot k \cdot x^{2}[/tex]
[tex]k = \frac{2\cdot \Delta U_{k}}{x^{2}}[/tex]
[tex]k = \frac{2\cdot (12.945\,J)}{(0.094\,m)^{2}}[/tex]
[tex]k = 2930.059\,\frac{N}{m}[/tex]