Respuesta :
Answer:
95% confidence interval for the difference between the proportions of males and females who have the blood disorder is [-0.064 , 0.014].
Step-by-step explanation:
We are given that a certain geneticist is interested in the proportion of males and females in the population who have a minor blood disorder.
A random sample of 1000 males, 250 are found to be afflicted, whereas 275 of 1000 females tested appear to have the disorder.
Firstly, the pivotal quantity for 95% confidence interval for the difference between population proportion is given by;
P.Q. = [tex]\frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+ \frac{\hat p_2(1-\hat p_2)}{n_2}} }[/tex] ~ N(0,1)
where, [tex]\hat p_1[/tex] = sample proportion of males having blood disorder= [tex]\frac{250}{1000}[/tex] = 0.25
[tex]\hat p_2[/tex] = sample proportion of females having blood disorder = [tex]\frac{275}{1000}[/tex] = 0.275
[tex]n_1[/tex] = sample of males = 1000
[tex]n_2[/tex] = sample of females = 1000
[tex]p_1[/tex] = population proportion of males having blood disorder
[tex]p_2[/tex] = population proportion of females having blood disorder
Here for constructing 95% confidence interval we have used Two-sample z proportion statistics.
So, 95% confidence interval for the difference between the population proportions, ([tex]p_1-p_2[/tex]) is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+ \frac{\hat p_2(1-\hat p_2)}{n_2}} }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+ \frac{\hat p_2(1-\hat p_2)}{n_2}} }[/tex] < [tex]{(\hat p_1-\hat p_2)-(p_1-p_2)}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+ \frac{\hat p_2(1-\hat p_2)}{n_2}} }[/tex] ) = 0.95
P( [tex](\hat p_1-\hat p_2)-1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+ \frac{\hat p_2(1-\hat p_2)}{n_2}} }[/tex] < ([tex]p_1-p_2[/tex]) < [tex](\hat p_1-\hat p_2)+1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+ \frac{\hat p_2(1-\hat p_2)}{n_2}} }[/tex] ) = 0.95
95% confidence interval for ([tex]p_1-p_2[/tex]) =
[[tex](\hat p_1-\hat p_2)-1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+ \frac{\hat p_2(1-\hat p_2)}{n_2}} }[/tex], [tex](\hat p_1-\hat p_2)+1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+ \frac{\hat p_2(1-\hat p_2)}{n_2}} }[/tex]]
= [ [tex](0.25-0.275)-1.96 \times {\sqrt{\frac{0.25(1-0.25)}{1000}+ \frac{0.275(1-0.275)}{1000}} }[/tex], [tex](0.25-0.275)+1.96 \times {\sqrt{\frac{0.25(1-0.25)}{1000}+ \frac{0.275(1-0.275)}{1000}} }[/tex] ]
= [-0.064 , 0.014]
Therefore, 95% confidence interval for the difference between the proportions of males and females who have the blood disorder is [-0.064 , 0.014].