Respuesta :

[tex]a_n[/tex] is a geometric sequence, which means consecutive terms occur in a fixed ratio. In other words,

[tex]a_n=ra_{n-1}[/tex]

for some fixed number [tex]r[/tex].

Using this rule, we have

[tex]a_5=ra_4[/tex]

[tex]a_6=ra_5=r(ra_4)=r^2a_4[/tex]

[tex]a_7=ra_6=r(r^2a_4)=r^3a_4[/tex]

So, given that [tex]a_4=3[/tex] and [tex]a_7=\frac19[/tex], we have

[tex]\dfrac19=3r^3\implies r^3=\dfrac1{27}\implies r=\dfrac13[/tex]

We can write [tex]a_n[/tex] in terms of [tex]a_4[/tex]:

[tex]a_n=ra_{n-1}=r^2a_{n-2}=r^3a_{n-3}=\cdots=r^{n-4}a_4[/tex]

(notice how the subscript and exponent add up to [tex]n[/tex]) so the sequence is given by the explicit rule

[tex]a_n=\left(\dfrac13\right)^{n-4}\cdot3\implies\boxed{a_n=\dfrac1{3^{n-5}}}[/tex]

Incidentally, we can pull out the first term from this sequence by plugging in [tex]n=1[/tex] to find [tex]a_1=81[/tex].

Next, if [tex]S_n[/tex] denotes the [tex]n[/tex]th partial sum of the sequence, then

[tex]S_8=a_1+a_2+\cdots+a_8[/tex]

For geometric sequences, we can replace [tex]a_2[/tex] through [tex]a_8[/tex] with terms containing [tex]a_1[/tex]:

[tex]S_8=a_1+ra_1+\cdots+r^7a_1=a_1(1+r+\cdots+r^7)[/tex]

Multiply both sides by [tex]r[/tex]:

[tex]rS_8=a_1(r+r^2+\cdots+r^8)[/tex]

Subtract [tex]rS_8[/tex] from [tex]S_8[/tex]; a bunch of terms cancel and we're left with

[tex]S_8-rS_8=(1-r)S_8=a_1(1-r^8)\implies S_8=a_1\dfrac{1-r^8}{1-r}[/tex]

For the sequence at hand, plug in [tex]a_1=81[/tex] and [tex]r=\frac13[/tex]. Then

[tex]S_8=81\dfrac{1-\left(\frac13\right)^8}{1-\frac13}\implies\boxed{S_8=\dfrac{3280}{27}}[/tex]

ACCESS MORE
EDU ACCESS