Answer:
a) [tex]t=\frac{(56.2-64.2)-0}{\sqrt{\frac{18.2^2}{22}+\frac{13.9^2}{11}}}}=-1.40[/tex]
b) [tex]p_v =2*P(t_{31}<-1.4)=0.171[/tex]
Step-by-step explanation:
Information given
[tex]\bar X_{1}=56.2[/tex] represent the mean for sample 1
[tex]\bar X_{2}=64.2[/tex] represent the mean for sample 2
[tex]s_{1}=18.2[/tex] represent the sample standard deviation for 1
[tex]s_{2}=13.9[/tex] represent the sample standard deviation for 2
[tex]n_{1}=22[/tex] sample size for the group 2
[tex]n_{2}=11[/tex] sample size for the group 2
t would represent the statistic (variable of interest)
System of hypothesis
We need to conduct a hypothesis in order to check if the true means are different, the system of hypothesis would be:
Null hypothesis:[tex]\mu_{1}-\mu_{2}=0[/tex]
Alternative hypothesis:[tex]\mu_{1} - \mu_{2}\neq 0[/tex]
The statistic is given by:
[tex]t=\frac{(\bar X_{1}-\bar X_{2})-\Delta}{\sqrt{\frac{s^2_{1}}{n_{1}}+\frac{s^2_{2}}{n_{2}}}}[/tex] (1)
The degrees of freedom are given by:
[tex]df=n_1 +n_2 -2=22+11-2=31[/tex]
Part a: Statisitc
Replacing into the formula we got:
[tex]t=\frac{(56.2-64.2)-0}{\sqrt{\frac{18.2^2}{22}+\frac{13.9^2}{11}}}}=-1.40[/tex]
Part b: P value
The p value on this case would be:
[tex]p_v =2*P(t_{31}<-1.4)=0.171[/tex]