An electron in a vacuum is first accelerated by a voltage of 51400 V and then enters a region in which there is a uniform magnetic field of 0.4 T at right angles to the direction of the electron’s motion. The mass of the electron is 9.11 × 10−31 kg and its charge is 1.60218 × 10−19 C. What is the magnitude of the force on the electron due to the magnetic field?

Respuesta :

Answer:

       F = 8.6 10⁻¹² N

Explanation:

For this exercise we use the law of conservation of energy

Initial. Field energy with the electron at rest

         Em₀ = U = q ΔV

Final. Electron with velocity, just out of the electric field

         Emf = K = ½ m v²

          Em₀ = Emf

          e ΔV = ½ m v²

          v =√ 2 e ΔV / m

          v = √(2 1.6 10⁻¹⁹ 51400 / 9.1 10⁻³¹)

           v = √(1.8075 10¹⁶)

           v = 1,344 10⁸ m / s

Now we can use the equation of the magnetic force

         F = q v x B

Since the speed and the magnetic field are perpendicular the force that

        F = e v B

        F = 1.6 10⁻¹⁹  1.344 10⁸ 0.4

       For this exercise we use the law of conservation of energy

Initial. Field energy with the electron at rest

         Emo = U = q DV

Final. Electron with velocity, just out of the electric field

         Emf = K = ½ m v2

          Emo = Emf

          .e DV = ½ m v2

          .v = RA 2 e DV / m

          .v = RA (2 1.6 10-19 51400 / 9.1 10-31)

           .v = RA (1.8075 10 16)

           .v = 1,344 108 m / s

Now we can use the equation of the magnetic force

         F = q v x B

Since the speed and the magnetic field are perpendicular the force that

        F = e v B

       F = 1.6 10-19 1,344 108 0.4

       F = 8.6 10-12 N

RELAXING NOICE
Relax