Answer:
[tex]log_3_2(5)=\frac{1}{5} k[/tex]
Step-by-step explanation:
Let's start by using change of base property:
[tex]log_b(x)=\frac{log_a(x)}{log_a(b)}[/tex]
So, for [tex]log_2(5)[/tex]
[tex]log_2(5)=k=\frac{log(5)}{log(2)}\hspace{10}(1)[/tex]
Now, using change of base for [tex]log_3_2(5)[/tex]
[tex]log_3_2(5)=\frac{log(5)}{log(32)}[/tex]
You can express [tex]32[/tex] as:
[tex]2^5[/tex]
Using reduction of power property:
[tex]log_z(x^y)=ylog_z(x)[/tex]
[tex]log(32)=log(2^5)=5log(2)[/tex]
Therefore:
[tex]log_3_2(5)=\frac{log(5)}{5*log(2)}=\frac{1}{5} \frac{log(5)}{log(2)}\hspace{10}(2)[/tex]
As you can see the only difference between (1) and (2) is the coefficient [tex]\frac{1}{5}[/tex] :
So:
[tex]\frac{log(5)}{log(2)} =k\\[/tex]
[tex]log_3_2(5)=\frac{1}{5} \frac{log(5)}{log(2)} =\frac{1}{5} k[/tex]