akader
contestada

When drawn in standard position, an angle B has a terminal ray that lies in the second quadrant and sin(B)=5/13. Find the value of cos(B), (show your answer as a fraction). Please show all your work

Please a help here.
Thank you

Respuesta :

Answer:

[tex]\cos{B} = -\frac{12}{13}[/tex]

Step-by-step explanation:

For any angle B, we have the following trigonometric identity:

[tex]\sin^{2}{B} + \cos^{2}{B} = 1[/tex]

In this problem, we have that:

[tex]\sin{B} = \frac{5}{13}[/tex]

So, applying the trigonometric identity:

[tex]\sin^{2}{B} + \cos^{2}{B} = 1[/tex]

[tex](\frac{5}{13})^{2}) + \cos^{2}{B} = 1[/tex]

[tex]\cos^{2}{B} = 1 - (\frac{5}{13})^{2})[/tex]

[tex]\cos^{2}{B} = 1 - \frac{25}{169}[/tex]

[tex]\cos^{2}{B} = \frac{169}{169} - \frac{25}{169}[/tex]

[tex]\cos^{2}{B} = \frac{144}{169}[/tex]

[tex]\cos{B} = \pm \sqrt{\frac{144}{169}}[/tex]

[tex]\cos{B} = \pm \frac{12}{13}[/tex]

In the second quadrant, the cosine is negative. So

[tex]\cos{B} = -\frac{12}{13}[/tex]

RELAXING NOICE
Relax