Answer:
[tex]\cos{B} = -\frac{12}{13}[/tex]
Step-by-step explanation:
For any angle B, we have the following trigonometric identity:
[tex]\sin^{2}{B} + \cos^{2}{B} = 1[/tex]
In this problem, we have that:
[tex]\sin{B} = \frac{5}{13}[/tex]
So, applying the trigonometric identity:
[tex]\sin^{2}{B} + \cos^{2}{B} = 1[/tex]
[tex](\frac{5}{13})^{2}) + \cos^{2}{B} = 1[/tex]
[tex]\cos^{2}{B} = 1 - (\frac{5}{13})^{2})[/tex]
[tex]\cos^{2}{B} = 1 - \frac{25}{169}[/tex]
[tex]\cos^{2}{B} = \frac{169}{169} - \frac{25}{169}[/tex]
[tex]\cos^{2}{B} = \frac{144}{169}[/tex]
[tex]\cos{B} = \pm \sqrt{\frac{144}{169}}[/tex]
[tex]\cos{B} = \pm \frac{12}{13}[/tex]
In the second quadrant, the cosine is negative. So
[tex]\cos{B} = -\frac{12}{13}[/tex]