Answer :
(a) The mass of [tex]Al_2O_3[/tex] produced is, 15.2 grams.
(b) The percent yield of the reaction is, 72.5 %
Explanation :
Part (a) :
Given,
Mass of [tex]Al[/tex] = 85.1 g
Molar mass of [tex]Al[/tex] = 27 g/mol
First we have to calculate the moles of [tex]Al[/tex]
[tex]\text{Moles of }Al=\frac{\text{Given mass }Al}{\text{Molar mass }Al}=\frac{85.1g}{27g/mol}=3.15mol[/tex]
Now we have to calculate the moles of [tex]Al_2O_3[/tex]
The balanced chemical equation is:
[tex]4Al+3O_2\rightarrow 2Al_2O_3[/tex]
From the reaction, we conclude that
As, 4 moles of [tex]Al[/tex] react to give 2 moles of [tex]Al_2O_3[/tex]
So, 3.15 moles of [tex]Al[/tex] react to give [tex]\frac{2}{4}\times 3.15=1.58[/tex] mole of [tex]Al_2O_3[/tex]
Now we have to calculate the mass of [tex]Al_2O_3[/tex]
[tex]\text{ Mass of }Al_2O_3=\text{ Moles of }Al_2O_3\times \text{ Molar mass of }Al_2O_3[/tex]
Molar mass of [tex]Al_2O_3[/tex] = 102 g/mole
[tex]\text{ Mass of }Al_2O_3=(1.58moles)\times (102g/mole)=161.2g[/tex]
Therefore, the mass of [tex]Al_2O_3[/tex] produced is, 161.2 grams.
Part (b) :
Now we have to calculate the percent yield of the reaction.
[tex]\text{Percent yield}=\frac{\text{Experimental yield}}{\text{Theoretical yield}}\times 100[/tex]
Experimental yield = 116.9 g
Theoretical yield = 161.2 g
Now put all the given values in this formula, we get:
[tex]\text{Percent yield}=\frac{116.9g}{161.2g}\times 100=72.5\%[/tex]
Therefore, the percent yield of the reaction is, 72.5 %