Answer:
Length of the longest trail [tex]= 9 \frac{1}{3}[/tex]
Step-by-step explanation:
The length of the longest trail will be equal to product of the two trails.
Given -
Length of one trail [tex]= 5\frac{1}{3}[/tex]
Length of the second trail [tex]= 1\frac{3}{4}[/tex]
Re writing the fractions, we get -
Length of one trail [tex]= \frac{16}{3}[/tex]
Length of second trail [tex]= \frac{7}{4}[/tex]
The length of the longest trail
[tex]\frac{16}{3} * \frac{7}{4}\\\frac{16*7}{3*4} \\\frac{4*7}{3} \\\frac{28}{3}\\9\frac{1}{3}[/tex]
Length of the longest trail [tex]= 9 \frac{1}{3}[/tex]