Respuesta :
Answer:
[tex]Imp = 35.652\,N\cdot s[/tex] (Option C)
Explanation:
The initial and final speed of the toolbox is found by means of the Principle of Energy Conservation:
[tex]\frac{1}{2}\cdot m \cdot v_{in}^{2} = m \cdot g \cdot h_{in}[/tex]
[tex]v_{in} = \sqrt{2\cdot g \cdot h_{in}}[/tex]
[tex]v_{in} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (0.2\,m)}[/tex]
[tex]v_{in}\approx 1.981\,\frac{m}{s}[/tex]
[tex]v_{out} = \sqrt{2\cdot g \cdot h_{out}}[/tex]
[tex]v_{out} = \sqrt{2\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (0.05\,m)}[/tex]
[tex]v_{out}\approx 0.99\,\frac{m}{s}[/tex]
The impact is calculated by means of the Principle of Momentum Conservation and the Impulse Theorem:
[tex]Imp = m\cdot(v_{out}-v_{in})[/tex]
[tex]Imp = (12\,kg)\cdot \left[0.99\,\frac{m}{s} - (-1.981\,\frac{m}{s})\right][/tex]
[tex]Imp = 35.652\,N\cdot s[/tex]
Answer:
36 N.s
Explanation:
From energy conservation, potential energy of fall is equal to the kinetic energy of fall.
Mass = 12 kg
Height h1 = 0.2 m
Potential energy = mgh1
Where g is the acceleration due to gravity 9.81 m/s2
PE = 12 x 9.81 x 0.2 = 23.54 J
PE = KE = 23.54 = 0.5mv^2
23.54 = 0.5 x 12 x v^2
v^2 = 23.54/6 = 3.92
v1 = 1.98 m/s.
The ball then rises to h2 = 0.05
PE = mgh2 = 12 x 9.81 x 0.05 = 5.87 J
PE = KE = 0.5mv^2
5.87 = 0.5 x 12 x v^2
v^2 = 5.87/6 = 0.98
v2 = -0.99 (travel in opposite direction)
Impulse is the change of momentum
I = m(v1 - v2) = 12 (1.98 - (-0.99))
I = 12(1.98 + 0.99) = 35.65N.s
Approximately 36 N.s