Answer:
[tex]\| \vec v\| = 0.836\,\frac{m}{s}[/tex], [tex]\alpha = 71.577^{\textdegree}[/tex] (Northeast)
Explanation:
Let consider that owner has the resultant direction of the momentums from the dog and the cat. First, the momentum of the owner is:
[tex]\|\vec p \| = \sqrt{\left[(27.4\,kg)\cdot \left(2.19\,\frac{m}{s} \right)\right]^{2}+\left[(7.19\,kg)\cdot \left(2.78\,\frac{m}{s} \right)\right]^{2}}[/tex]
[tex]\|\vec p \| = 63.248\,kg\cdot \frac{m}{s}[/tex]
The speed of the owner is:
[tex]\|\vec v \| = \frac{63.248\,kg\cdot \frac{m}{s}}{75.7\,kg}[/tex]
[tex]\| \vec v\| = 0.836\,\frac{m}{s}[/tex]
Lastly, the direction of the owner is:
[tex]\alpha = \tan^{-1}\left[\frac{(27.4\,kg)\cdot \left(2.19\,\frac{m}{s} \right)}{(7.19\,kg)\cdot \left(2.78\,\frac{m}{s} \right)} \right][/tex]
[tex]\alpha = 71.577^{\textdegree}[/tex] (Northeast)