Answer:
[tex]\omega = 0.016\,\frac{rad}{s}[/tex]
Explanation:
The rotation rate of the man is:
[tex]\omega = \frac{v}{R}[/tex]
[tex]\omega = \frac{0.80\,\frac{m}{s} }{5\,m}[/tex]
[tex]\omega = 0.16\,\frac{rad}{s}[/tex]
The resultant rotation rate of the system is computed from the Principle of Angular Momentum Conservation:
[tex](90\,kg)\cdot (5\,m)^{2}\cdot (0.16\,\frac{rad}{s} ) = [(90\,kg)\cdot (5\,m)^{2}+20000\,kg\cdot m^{2}]\cdot \omega[/tex]
The final angular speed is:
[tex]\omega = 0.016\,\frac{rad}{s}[/tex]