Answer:
[tex]t = 500000\,years[/tex]
Explanation:
The time constant of the radioactive isotope is:
[tex]\tau = \frac{150000\,years}{\ln 2}[/tex]
[tex]\tau = 216404.256\,years[/tex]
The isotope decay is predicted by the following model:
[tex]\frac{m}{m_{o}} = e^{-\frac{t}{\tau} }[/tex]
[tex]\frac{125\,g}{125\,g + 875\,g} = e^{-\frac{t}{216404.256\,years} }[/tex]
[tex]0.125 = e^{-\frac{t}{216404.256} }[/tex]
The age of the rock is determined after algebraic handling:
[tex]\ln 0.125 = -\frac{t}{216404.256}[/tex]
[tex]t = 500000\,years[/tex]