Answer:
[tex]\frac{1}{3}[/tex]
Step-by-step explanation:
A point (x, y) with integer coordinates is randomly selected such that [tex]0 \le x \le 8 \:and\: $0 \le y \le 4$.[/tex]
The possible pairs of (x,y) are:
(0,0),(0,1),(0,2),(0,3),(0,4)
(1,0),(1,1),(1,2),(1,3),(1,4)
(2,0),(2,1),(2,2),(2,3),(2,4)
(3,0),(3,1),(3,2),(3,3),(3,4)
(4,0),(4,1),(4,2),(4,3),(4,4)
(5,0),(5,1),(5,2),(5,3),(5,4)
(6,0),(6,1),(6,2),(6,3),(6,4)
(7,0),(7,1),(7,2),(7,3),(7,4)
(8,0),(8,1),(8,2),(8,3),(8,4)
The Total Possible Outcomes n(S)= 45
The pair (x, y) that satisfies the given condition (say event A: [tex]x + y \le 4[/tex]) are:
[tex](0,0),(0,1),(0,2),(0,3),(0,4)\\(1,0),(1,1),(1,2),(1,3)\\(2,0),(2,1),(2,2)\\(3,0),(3,1)\\(4,0)[/tex]
n(A)=15
Therefore:
[tex]P(A)=\frac{n(A)}{n(S)} =\frac{15}{45} =\frac{1}{3}[/tex]