Answer:
(x-4)^2 + (y-2)^2 = 3^2
or
(x-4)^2 + (y-2)^2 = 9 (simplified if needed)
Step-by-step explanation:
-Equation of a circle is:
[tex](x-h)^2+(y-k)^2=r^2[/tex] where the center is (h, k) and the radius is [tex]r^2[/tex].
-Place the center and the point onto that equation:
[tex](7-4)^2+(2-2)^2=r^2[/tex]
-Then, you solve:
[tex](7-4)^2+(2-2)^2=r^2[/tex]
[tex](3)^2+(0)^2=r^2[/tex]
[tex]9 +0=r^2[/tex]
[tex]9=r^2[/tex]
[tex]\sqrt{9} =\sqrt{r^2}[/tex]
[tex]3=r[/tex]
-So, the result is:
[tex](x-4)^2+(y-2)^2=3^2[/tex]
or
[tex](x-4)^2+(y-2)^2=9[/tex] (simplified if needed)