The height of a cone is twice the radius of its base,

What expression represents the volume of the cone, in

cubic units?

олх?

олх?

О 2лх

ОАлх

Respuesta :

Answer:

[tex]\dfrac{2}{3}\pi r^3 $ cubic units[/tex]

Step-by-step explanation:

Given a cone of base radius, r and perpendicular height, h

[tex]\text{Volume of the cone }=\frac{1}{3}\pi r^2 h[/tex]

Since the height of a cone is twice the radius of its base.

  • h=2r

[tex]\text{Volume of the cone }=\dfrac{1}{3}\pi r^2 (2r)\\=\dfrac{2}{3}\pi r^3 $ cubic units[/tex]

The expression that represents the volume of the cone, in  cubic units is [tex]\dfrac{2}{3}\pi r^3 $ cubic units[/tex].

ACCESS MORE
EDU ACCESS
Universidad de Mexico