The measurement of a side of a square is found to be 10 centimeters, with a possible error of 0.07 centimeter. (a) Approximate the percent error in computing the area of the square. % (b) Estimate the maximum allowable percent error in measuring the side if the error in computing the area cannot exceed 2.7%. %

Respuesta :

Answer:

a) [tex]\delta = 1.4\,\%[/tex], b) [tex]\delta_{max} = 1.35\,\%[/tex]

Step-by-step explanation:

a) The area formula for a square is:

[tex]A =l^{2}[/tex]

The total differential for the area is:

[tex]\Delta A = \frac{\partial A}{\partial l}\cdot \Delta l[/tex]

[tex]\Delta A = 2\cdot l \cdot \Delta l[/tex]

The absolute error for the area of the square is:

[tex]\Delta A = 2\cdot (10\,cm)\cdot (0.07\,cm)[/tex]

[tex]\Delta A = 1.4\,cm^{2}[/tex]

Thus, the relative error is:

[tex]\delta = \frac{\Delta A}{A}\times 100\,\%[/tex]

[tex]\delta = \frac{1.4\,cm^{2}}{100\,cm^{2}} \times 100\,\%[/tex]

[tex]\delta = 1.4\,\%[/tex]

b) The maximum allowable absolute error for the area of the square is:

[tex]\Delta A_{max} = \left(\frac{\delta}{100} \right)\cdot A[/tex]

[tex]\Delta A_{max} = \left(\frac{2.7}{100} \right)\cdot (100\,cm^{2})[/tex]

[tex]\Delta A_{max} = 2.7\,cm^{2}[/tex]

The maximum allowable absolute error for the length of a side of the square is:

[tex]\Delta l_{max}= \frac{\Delta A_{max}}{2\cdot l}[/tex]

[tex]\Delta l_{max} = \frac{2.7\,cm^{2}}{2\cdot (10\,cm)}[/tex]

[tex]\Delta l_{max} = 0.135\,cm[/tex]

Lastly, the maximum allowable relative error is:

[tex]\delta_{max} = \frac{\Delta l_{max}}{l}\times 100\,\%[/tex]

[tex]\delta_{max} = \frac{0.135\,cm}{10\,cm} \times 100\,\%[/tex]

[tex]\delta_{max} = 1.35\,\%[/tex]

RELAXING NOICE
Relax