Respuesta :

Answer:

[tex]p[/tex]≈[tex]14.5[/tex]

Step-by-step explanation:

Find the distance between the three pairs first using the distance formula:

[tex]\sqrt{(x2-x1)^2+(y2-y1)^2}[/tex]

Take the first two points, [tex](-1,3)(3,0)[/tex] and insert the values:

[tex]\sqrt{(3-(-1))^2+(0-3)^2}[/tex]

Simplify parentheses (two negatives makes a positive):

[tex]\sqrt{(3+1)^2+(0-3)^2}\\\\ \sqrt{(4)^2+(-3)^2}\\\\\sqrt{16+9}\\ \\\sqrt{25}=5[/tex]

The distance between the first two points is 5. Use the nest two points, [tex](3,0)(-1,-2)[/tex] and insert values:

[tex]\sqrt{(-1-3)^2+(-2-0)^2}[/tex]

Simplify parentheses:

[tex]\sqrt{(-4)^2+(-2)^2}\\ \\\sqrt{16+4} \\\\\sqrt{20}=4.5[/tex]

The distance between the nest two point is about 4.5. Use the remaining two points, [tex](-1,-2)(-1,3)[/tex] and insert values:

[tex]\sqrt{(-1-(-1))^2+(3-(-2))^2}[/tex]

Simplify parentheses (two negatives makes a positive):

[tex]\sqrt{(-1+1)^2+(3+2)^2}\\\\\sqrt{(0)^2+(5)^2}\\ \\\sqrt{0+25}\\ \\\sqrt{25}=5[/tex]

The distance between the last points is 5. Add the distances together to find the perimeter of the triangle:

[tex]5+4.5+5\\10+4.5\\14.5[/tex]

The perimeter is about 14.5.

RELAXING NOICE
Relax