Answer:
a) [tex] f(x) = \frac{1}{40-30}, 30 \leq x \leq 40[/tex]
b) [tex] E(X) = \frac{a+b}{2}= \frac{30+40}{2}=35[/tex]
c) [tex] Var(X) = \frac{(b-a)^2}{12}= \frac{(40-30)^2}{12}= 8.33[/tex]
And the deviation would be:
[tex] Sd(X) = \sqrt{8.33}= 2.887[/tex]
d) [tex]P(34< X <38) = F(38) -F(34)= \frac{38-30}{10} -\frac{34-30}{10}= 0.8-0.4=0.4[/tex]
Step-by-step explanation:
For this case we define the random variable X with this distribution:
[tex] X \sim Unif (a=30, b=40)[/tex]
Part a
The density function since is an uniform distribution is given by:
[tex] f(x) = \frac{1}{40-30}, 30 \leq x \leq 40[/tex]
Part b
The expected value is given by:
[tex] E(X) = \frac{a+b}{2}= \frac{30+40}{2}=35[/tex]
Part c
The variance is given by:
[tex] Var(X) = \frac{(b-a)^2}{12}= \frac{(40-30)^2}{12}= 8.33[/tex]
And the deviation would be:
[tex] Sd(X) = \sqrt{8.33}= 2.887[/tex]
Part d
For this case we want this probability:
[tex] P(34< X <38)[/tex]
And we can use the cumulative distribution function given by:
[tex] F(x)= \frac{x-30}{40-30}, 30 \leq X \leq 40[/tex]
And using this we got:
[tex]P(34< X <38) = F(38) -F(34)= \frac{38-30}{10} -\frac{34-30}{10}= 0.8-0.4=0.4[/tex]