Answer:
a) [tex]P(X<100)=P(\frac{X-\mu}{\sigma}<\frac{100-\mu}{\sigma})=P(Z<\frac{100-114}{8})=P(z<-1.75)[/tex]
And we can find this probabiliy using the normal standard table or excel and we got:
[tex]P(z<-1.75)=0.04[/tex]
So then we expect about 4%
b) [tex]P(X>125)=P(\frac{X-\mu}{\sigma}>\frac{125-\mu}{\sigma})=P(Z>\frac{125-114}{8})=P(z>1.375)[/tex]
And we can find this probabiliy using the complement rule and the normal standard table or excel and we got:
[tex]P(z>1.375)=1-P(Z<1.375) = 1-0.915=0.085[/tex]
So then we expect about 8.5%
Step-by-step explanation:
Part a
Let X the random variable that represent the speeds of vehicles, and for this case we know the distribution for X is given by:
[tex]X \sim N(114,8)[/tex]
Where [tex]\mu=114[/tex] and [tex]\sigma=8[/tex]
We want to find this probability (legal speed)
[tex]P(X<100)[/tex]
We can use the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X<100)=P(\frac{X-\mu}{\sigma}<\frac{100-\mu}{\sigma})=P(Z<\frac{100-114}{8})=P(z<-1.75)[/tex]
And we can find this probabiliy using the normal standard table or excel and we got:
[tex]P(z<-1.75)=0.04[/tex]
So then we expect about 4%
Part b
[tex]P(X>125)=P(\frac{X-\mu}{\sigma}>\frac{125-\mu}{\sigma})=P(Z>\frac{125-114}{8})=P(z>1.375)[/tex]
And we can find this probabiliy using the complement rule and the normal standard table or excel and we got:
[tex]P(z>1.375)=1-P(Z<1.375) = 1-0.915=0.085[/tex]
So then we expect about 8.50%