Respuesta :
Answer:
95% confidence interval for the difference in the proportion is [-0.017 , 0.697].
Step-by-step explanation:
We are given that a simple random sample of 12 small cars were subjected to a head-on collision at 40 miles per hour. Of them 8 were "totaled," meaning that the cost of repairs is greater than the value of the car.
Another sample of 15 large cars were subjected to the same test, and 5 of them were totaled.
Firstly, the pivotal quantity for 95% confidence interval for the difference between population proportion is given by;
P.Q. = [tex]\frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] ~ N(0,1)
where, [tex]\hat p_1[/tex] = sample proportion of small cars that were totaled = [tex]\frac{8}{12}[/tex] = 0.67
[tex]\hat p_2[/tex] = sample proportion of large cars that were totaled = [tex]\frac{5}{15}[/tex] = 0.33
[tex]n_1[/tex] = sample of small cars = 12
[tex]n_2[/tex] = sample of large cars = 15
[tex]p_1[/tex] = population proportion of small cars that are totaled
[tex]p_2[/tex] = population proportion of large cars that were totaled
Here for constructing 95% confidence interval we have used Two-sample z proportion statistics.
So, 95% confidence interval for the difference between population population, ([tex]p_1-p_2[/tex]) is ;
P(-1.96 < N(0,1) < 1.96) = 0.95 {As the critical value of z at 2.5% level
of significance are -1.96 & 1.96}
P(-1.96 < [tex]\frac{(\hat p_1-\hat p_2)-(p_1-p_2)}{\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] < 1.96) = 0.95
P( [tex]-1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] < [tex]{(\hat p_1-\hat p_2)-(p_1-p_2)}[/tex] < [tex]1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] ) = 0.95
P( [tex](\hat p_1-\hat p_2)-1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] < [tex]p_1-p_2[/tex] < [tex](\hat p_1-\hat p_2)+1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] ) = 0.95
95% confidence interval for [tex]p_1-p_2[/tex] = [[tex](\hat p_1-\hat p_2)-1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex] , [tex](\hat p_1-\hat p_2)+1.96 \times {\sqrt{\frac{\hat p_1(1-\hat p_1)}{n_1}+\frac{\hat p_2(1-\hat p_2)}{n_2} } }[/tex]]
= [[tex](0.67-0.33)-1.96 \times {\sqrt{\frac{0.67(1-0.67)}{12}+\frac{0.33(1-0.33)}{15} } }[/tex] , [tex](0.67-0.33)+1.96 \times {\sqrt{\frac{0.67(1-0.67)}{12}+\frac{0.33(1-0.33)}{15} } }[/tex]]
= [-0.017 , 0.697]
Therefore, 95% confidence interval for the difference between proportions l and 2 is [-0.017 , 0.697].
Otras preguntas
