From a point along a straight road, the angle of elevation to the top of a hill is . From farther down the road, the angle of elevation to the top of the hill is . How high is the hill?

Respuesta :

Complete Question:

From a point along a straight road, the angle of elevation to the top of a hill is 33° . A distance of 200 ft farther down the road, the angle of elevation to the top of the hill is 20°. How high is the hill?

Answer:

The hill is 165.87 ft high

Step-by-step explanation:

Check the file attached below for a pictorial understanding of the question

[tex]tan \theta = \frac{opposite}{Adjacent}[/tex]

From ΔABC

[tex]tan 33 = \frac{y}{x} \\[/tex]

[tex]y = x tan 33[/tex]..........(1)

From ΔABD

[tex]tan 20 = \frac{y}{x + 200} \\[/tex]

[tex]y = (x + 200) tan 20[/tex]............(2)

Equating (1) and (2)

[tex]x tan 33 = (x+200) tan20\\xtan33 = xtan20 + 200tan20\\0.649x = 0.364x + 72.794\\0.649x - 0.364x = 72.794\\0.285x = 72.794\\x = 72.794/0.285\\x = 255.42 ft[/tex]

Substitute the value of x into equation (1)

[tex]y = 255.42 tan 33[/tex]

y = 165.87 ft

Ver imagen kollybaba55
RELAXING NOICE
Relax