Answer: (x+3)^2 +(y-12)^2 = 10^2
or
(x+3)^2 + (y-12)^2 = 100 (if simplified radius needed).
Step-by-step explanation:
-The equation of a circle is:
[tex](x-h)^2 +(y-k)^2=r^2[/tex] where the center (h, k), the point (x, y) and radius [tex]r^2[/tex].
-Put the center and the point onto that equation, in order to solve and get the equation:
[tex](3+3)^2+(4-12)^2=r^2[/tex]
-Then, you solve:
[tex](3+3)^2+(4-12)^2=r^2[/tex]
[tex](6)^2+(-8)^2=r^2[/tex]
[tex]36+64=r^2[/tex]
[tex]100=r^2[/tex]
[tex]\sqrt{100} =\sqrt{r^2}[/tex]
[tex]10=r[/tex]
so, the result can be:
[tex](x+3)^2+(y-12)^2=10^2[/tex]
or
[tex](x+3)^2+(y-12)^2=100[/tex] (if simplified radius needed).