Answer:
1.06 × 10³ g
Explanation:
Let's consider the following reaction
2 TiCl₄(g) + H₂(g) ↔ 2 TiCl₃(s) + 2 HCl(g)
First, we need to calculate the moles of H₂. For that, we need to convert the pressure to atm and the temperature to Kelvin.
[tex]795mmHg \times \frac{1atm}{760mmHg} = 1.05atm[/tex]
[tex]K = \° C + 273.15 = 435 + 273.15 = 708 K[/tex]
Then, we can calculate the moles of H₂ using the ideal gas equation.
[tex]P \times V = n \times R \times T\\n = \frac{1.05atm \times 155L}{(0.0821atm.L/mol.K) \times 708K} = 2.80 mol[/tex]
The molar ratio of TiCl₄ to H₂ is 2:1. We can use this relation to calculate the moles of TiCl₄.
[tex]2.80molH_2 \times \frac{2molTiCl_4}{1molH_2} = 5.60molTiCl_4[/tex]
The molar mass of TiCl₄ is 189.68 g/mol. We will use this data to calculate the mass corresponding to 5.60 moles.
[tex]5.60mol \times \frac{189.68g}{mol} = 1.06 \times 10^{3} g[/tex]