Respuesta :
Answer:
[tex]x_{1} = 1.6[/tex], [tex]x_{2} = 1.433[/tex], [tex]x_{3} = 1.384[/tex]
Explanation:
The expression for the approximation via Newton's Method has the following form:
[tex]x_{n+1} = x_{n} - \frac{f(x_{n})}{f'(x_{n})}[/tex]
The function and its derivative are, respectively:
[tex]f(x_{n}) = x^{5}-5[/tex]
[tex]f'(x_{n})= 5\cdot x ^{4}[/tex]
After substituting the known variable, the Newton's expression is left as follows:
[tex]x_{n+1} =x_{n}- \frac{x_{n}^{5}-5}{5\cdot x_{n}^{4}}[/tex]
The first two iterations are presented herein:
[tex]x_{2} = 1.6 - \frac{1.6^{5}-5}{5\cdot (1.6)^{4}}[/tex]
[tex]x_{2} = 1.433[/tex]
[tex]x_{3} = 1.433 - \frac{1.433^{5}-5}{5\cdot (1.433)^{4}}[/tex]
[tex]x_{3} = 1.384[/tex]
Answer:
[tex]x_2=1.433[/tex]
[tex]x_3=1.383[/tex]
Explanation:
Hello,
In this case, for the Newton-Raphson method, we use the following equation in order to show the iterations i:
[tex]x_{i+1}=x_i-\frac{f(x_i)}{f'(x_i)}[/tex]
Hence the derivative of the given function is:
[tex]f'(x)=5x^4[/tex]
In such a way, the first iteration:
[tex]x_{1+1}=1.6-\frac{(1.6)^5-5}{5(1.6)^4}\\x_2=1.433[/tex]
Then the second iteration:
[tex]x_{2+1}=1.433-\frac{(1.433)^5-5}{5(1.433)^4}\\x_3=1.383[/tex]
Best regards.