Answer:
[tex]f(1/2)=0[/tex]
Step-by-step explanation:
Given this function:
[tex]f(x)=ax+b[/tex]
We need to find the value of:
[tex]f(1/2)[/tex]
This is really simple because the problem give us the following data:
[tex]f(3)=5\\\\and\\\\f(-2)=-5[/tex]
Using this data we can write a 2x2 system of equations like this:
Let:
[tex]f(3)=5=a(3)+b\\\\\rightarrow3a+b=5\hspace{10}(1)[/tex]
and
[tex]f(-2)=5=a(-2)+b\\\\\rightarrow-2a+b=-5\hspace{10}(2)[/tex]
Our system will be:
[tex]3a+b=5\hspace{28}(1)\\-2a+b=-5\hspace{10}(2)[/tex]
We can solve this system using different methods, however I will use elimination method because I believe it is really simple. So:
[tex](1)-(2)\\\\5-(-5)=3a-(-2a)+b-b\\\\10=5a\\\\Solving\hspace{3}for\hspace{3}a\\\\a=\frac{10}{5} =2[/tex]
Replacing [tex]a[/tex] into (1)
[tex]3(2)+b=5\\\\6+b=5\\\\Solving\hspace{3}for\hspace{3}b\\\\b=5-6=-1[/tex]
Now we found the values of [tex]a[/tex] and [tex]b[/tex], our function is given by:
[tex]f(x)=2x-1[/tex]
Let's verify it:
[tex]f(3)=2(3)-1=6-1=5[/tex]
[tex]f(-2)=2(-2)-1=-4-1=-5[/tex]
As you can see the function satisfies the data provided by the problem. So we can conclude that it is correct.
Finally, let's find [tex]f(x)[/tex] for [tex]x=1/2[/tex] :
[tex]f(1/2)=2(\frac{1}{2} )-1=\frac{2}{2} -1=1-1=0[/tex]
Hence:
[tex]f(1/2)=0[/tex]