Please please please help and solve this with steps, much help needed thank you :) 20 points for this!

Answer:
[tex]y=\sqrt{\frac{x^4-6x^2+12x+c_1}{2}},\:y=-\sqrt{\frac{x^4-6x^2+12x+c_1}{2}}[/tex]
(Please vote me Brainliest if this helped!)
Step-by-step explanation:
[tex]\frac{dy}{dx}y=x^3+2x-5x+3[/tex]
[tex]\mathrm{First\:order\:separable\:Ordinary\:Differential\:Equation}[/tex]
1. [tex]\mathrm{Substitute\quad }\frac{dy}{dx}\mathrm{\:with\:}y'\:[/tex]
[tex]y'\:y=x^3+2x-5x+3[/tex]
2. [tex]\mathrm{Rewrite\:in\:the\:form\:of\:a\:first\:order\:separable\:ODE}[/tex]
[tex]yy'\:=x^3-3x+3[/tex]
3. [tex]\mathrm{Solve\:}\:yy'\:=x^3-3x+3:\quad \frac{y^2}{2}=\frac{x^4}{4}-\frac{3x^2}{2}+3x+c_1[/tex]
4. [tex]\mathrm{Isolate}\:y:\quad y=\sqrt{\frac{x^4-6x^2+12x+4c_1}{2}},\:y=-\sqrt{\frac{x^4-6x^2+12x+4c_1}{2}}[/tex]
5. [tex]\mathrm{Simplify}[/tex]
[tex]y=\sqrt{\frac{x^4-6x^2+12x+c_1}{2}},\:y=-\sqrt{\frac{x^4-6x^2+12x+c_1}{2}}[/tex]