Answer:
Q = 2.3 * 10⁻⁴ Gy
Explanation:
The mass of the human body, M = 70 kg
Mass of potassium, [tex]m_{p} = 140 g[/tex]
Atomic mass of potassium, MM = 39.1 g/mol
The half life of the isotope 40K, [tex]t_{1/2} = 1.3 * 10^{9}[/tex]
Number of moles of potassium, [tex]n = \frac{m_{p} }{MM}[/tex]
[tex]n = \frac{140}{39.1}[/tex]
n = 3.58 mols
Let the number of atoms in the potassium be N
Number of mols of potassium, [tex]n = \frac{N}{6.02 * 10^{23} }[/tex]
[tex]N = 6.02 * 10^{23} * n\\N = 6.02 * 10^{23} * 3.58\\N = 2.156 * 10^{24} atoms[/tex]
The 40K isotope has a natural abundance of 0.012% = 0.00012
That means the number of atoms originally in the 40K isotope is, [tex]N_{0} = 0.00012 * 2.156 * 10^{24}[/tex]
[tex]N_{0} = 2.5875165 * 10^{20} atoms[/tex]
Number of atoms remaining after decay [tex]N_{f} = N - N_{0}[/tex]
Decay constant, [tex]\lambda = \frac{ln 2}{t_{1/2} }[/tex]
[tex]\lambda = \frac{ln 2}{1.3 * 10^9} \\\lambda = 533.19 * 10^{-12} yr^{-1}[/tex]
The question is asking for the yearly dose, i.e t = 1 yr
[tex]N_{f} = N_{0} e^{- \lambda t} \\N_{f} = (2.5875165 * 10^{20} ) e^{- 533.19 * 10^{-12} *1}\\N_{f} = 2.587516499 * 10^{20}[/tex]
The number of 40K atoms decaying in 1 yr = [tex]N_{0} - N_{f} = (2.5875165 *10^{24} ) - (2.587516499 * 10^{20})[/tex]
The number of 40K atoms decaying in 1 yr = 1 * 10¹¹ atoms
1 40K atom deposits 1.0MeV of energy into the body
1 * 10¹¹ atoms will deposit 1 * 10¹¹MeV of energy into the body = 10¹⁷ eV
1 eV = 1.6 * 10⁻¹⁹ Joules
10¹⁷ eV = (10¹⁷)*(1.6 * 10⁻¹⁹) Joules
10¹⁷ eV = 0.016 J
The amount of dose a typical body receives in Gy = 0.016/70
The amount of dose a typical body receives in Gy = 2.29 * 10⁻⁴