Respuesta :
Answer:
Machine B has a higher NPV therefore should be produced
Explanation:
The machine with the higher Net Present Value (NPV) should be produced .
NPV of Machine A
PV of cash flow
PV of annual profit = A × (1- (1+r)^*(-n)/r
A- 92,000, n- 11, r- 12%
PV = 92,000 × (1- (1.12^(-11)/0.12 = 546268.32
PV of salvage value = 13,000× 1.12^(-11)= 3737.189
NPV = 546268.320 + 3737.189 -250,000 = $300,005.50
NPV of Machine B
A- 103,00, n- 19, r- 12%
PV = 103,000 × (1- (1.12^(-19)/0.12= 758675.0165
Pv of salvage value = 26000× 1.12^(-19)= 3018.776199
NPV =758675.0165 + 3018.77 -460,000 = $301,693.79
Machine B has a higher NPV , therefore should be produced.
Answer:
While Machine B has an slightly higher net present value his annual worth is much lower than machine A therefore, the company should purchase machine A which yield better annual return
Machine A
Net Present Value: 300,005.00
Anual worth $ 50,525.463
Machine B
Net Present Value: 301.693,8
Anual worth $ 40,958.857
Explanation:
We calculate the present value of each machine
and also, the annual worth of each one to get a fair comparison considering their useful life differ
Machine A
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 92,000.00
time 11
rate 0.12
[tex]92000 \times \frac{1-(1+0.12)^{-11} }{0.12} = PV\\[/tex]
PV $546,268.3202
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $13,000.00
time 11.00
rate 0.12000
[tex]\frac{13000}{(1 + 0.12)^{11} } = PV[/tex]
PV 3,737.1894
Net Present Value:
$546,268.32 + $3,737.19 - $250,000 = 300.005,51
Annual worth:
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV 300,005.00
time 11
rate 0.12
[tex]300005 \div \frac{1-(1+0.12)^{-11} }{0.12} = C\\[/tex]
C $ 50,525.463
Machine B
[tex]C \times \frac{1-(1+r)^{-time} }{rate} = PV\\[/tex]
C 103,000.00
time 19
rate 0.12
[tex]103000 \times \frac{1-(1+0.12)^{-19} }{0.12} = PV\\[/tex]
PV $758,675.0165
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $26,000.00
time 19.00
rate 0.12000
[tex]\frac{26000}{(1 + 0.12)^{19} } = PV[/tex]
PV 3,018.7762
Net present value
$758,675.02 + $3,018.78 - 460,000 = 301.693,8
Annual worth
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV 301,693.80
time 19
rate 0.12
[tex]301693.8 \div \frac{1-(1+0.12)^{-19} }{0.12} = C\\[/tex]
C $ 40,958.857
Otras preguntas
