Answer:
a) Sample correlation coefficient, r = 0.7411
bi) test statistic, t = 4.102
bii) P-value = 0.000736
Step-by-step explanation:
a) The formula for the sample correlation coefficient is given by the formula:
[tex]r = \frac{S_{xy} }{\sqrt{S_{xx} S_{yy} }} }[/tex]
[tex]S_{xx} = 2,648,130.357\\S_{yy} = 36.7376,\\S_{xy} = 7408.225[/tex]
[tex]r = \frac{7408.225}{\sqrt{2648130.357*36.7376} }[/tex]
r = 0.7511
b)
i) formula for the test statistic is given by the formula:
[tex]t = \frac{r\sqrt{n-1} }{\sqrt{1 - r^{2} } }[/tex]
sample size, n = 4
[tex]t = \frac{0.7511\sqrt{14-1} }{\sqrt{1 - 0.7511^{2} } }[/tex]
t = 4.102
ii) Degree of freedom, df = n -2
df = 14 -2
df = 12
The P-value is calculate from the degree of freedom and the test statistic using excel
P-value =(=TDIST(t,df,tail))
P-value = (=TDIST(4.1,12,1)
P-value = 0.000736