Respuesta :
Answer:
The workdone by both N₂ and neon gas is 49.3 J
The change in internal energy of N₂ and neon gas is 125.6 J and 73.54 J respectively
The heat for N₂ and neon gas is 171.9 J and 122.84 J respectively.
Explanation:
Given that:
number of moles = 0.05 mole
mass of the piston = 30 kg
diameter = 5.00 cm = 0.05 m
Area (A) = πr²
[tex]Area (A) = \pi*(\frac{0.05}{2})^2 \\ \\ Area (A) = 0.0019635 \\ \\ Area (A) = 19.635*10^{-4} \ m^2[/tex]
The piston is said to move from 30 cm - 40 cm
So, the change in volume ΔV is calculated as:
[tex]=(40-30)*10^{-2} *19.635*10^{-4}[/tex]
[tex]= 1.9635*10^{-4} \ m^3[/tex]
Outside the cylinder; the pressure [tex]P_{air}= 1 \ atm[/tex] = 101325 Pa
Thus, workdone [tex]w_1[/tex] = PΔV
= [tex]101325*1.9635*10^{-4}[/tex]
= 19.90 J
The gravitational work [tex]w_2 = mgh[/tex]
Given that the height (h) = 10 cm = 0.1 m
Then; [tex]w_2 = 30*9.8*0.1[/tex]
[tex]w_2 = 29.4 \ J[/tex]
The total workdone [tex]w_{total}[/tex] for both cases is:
[tex]w_{total } =w_1 + w_2[/tex]
[tex]w = (19.90 + 29.4) \ J[/tex]
[tex]w =49.3 \ J[/tex]
The pressure of gas inside the cylinder is determined as:
[tex]P_{in}.A = P_{out}.A +mg[/tex]
[tex](P_{in}-P_{out}) = \frac{mg}{A} \\ \\ P_{in} -10^5 = \frac{30*9.8}{19.635*10^{-4}} \\ \\ P_{in} = 149732.6203+10^5 \\ \\ P_{in} = 2.497*10^5 \ Pa[/tex]
a). assuming that the gas is N₂.
[tex]C_v =\frac{5}{2}R[/tex]
Thus, the change in internal energy ΔU is given as:
[tex]\delta U = nC_v \delta T \\ \\ \delta U = n* \frac{5}{2}R \delta T \\ \\ \delta U = \frac{5}{2}nR \delta T[/tex]
Since [tex]P_{in} \delta V = nR \delta T ; \ Then[/tex];
[tex]\delta \ U = \frac{5}{2} P_{in} \delta V \\ \\ \delta \ U = \frac{5}{2}*2.497*10^5 *1.9635*10^{-4} \\ \\ \delta \ U = 122.57 \ J[/tex]
ΔU ≅ 125.6 J
The heat Q = ΔU + W
Q = (122.6 + 49.3) J
Q = 171.9 J
b) In Neon gas:
[tex]C_v = \frac{3}{2}R[/tex]
∴
change in internal energy is;
[tex]\delta U = nC_v \delta T \\ \\ \delta U = n* \frac{3}{2}R \delta T \\ \\ \delta U = \frac{3}{2}P_{in}.V[/tex]
[tex]\delta U = \frac{3}{2}*2.497*10^5*1.9635*10^{-4}[/tex]
ΔU = 73.54 J
The heat Q = ΔU + W
Q = (73.54 + 49.3) J
Q = 122.84 J
