Early in 1981 the Francis Bitter National Magnet Laboratory at M.I.T. commenced operation of a 3.3 cm diameter cylindrical magnet, which produces a 30 T field, then the world's largest steady-state field. The field can be varied sinusoidally between the limits of 29.6 and 30.0 T at a frequency of 15 Hz. When this is done, what is the maximum value of the induced electric field at a radial distance of 1.4 cm from the axis

Respuesta :

Answer:

The maximum electric field [tex]E_{max}= 0.132V/m[/tex]

Explanation:

From the question we are told that

       The diameter is  [tex]d = 3.3 cm = \frac{3.3}{100} = 0.033m[/tex]

         The magnetic field  of the cylinder is [tex]B = 30 T[/tex]

           The frequency is  [tex]f = 15Hz[/tex]

            The radial distance is  [tex]d_r = 1.4cm = \frac{1.4}{100} = 0.014m[/tex]

This magnetic field can be represented mathematically as

        [tex]B(t) = B_i + B_1sin (wt + \o_i)[/tex]

 The initial magnetic field is the average between the variation of the magnetic field which is represented as

          [tex]B_i = \frac{30 + 29.6}{2}[/tex]

               [tex]= 29.8T[/tex]

Then [tex]B_1[/tex] is the amplitude of the  resultant  field is mathematically evaluated as

                 [tex]B_1 = \frac{30.0 - 29.6}{2}[/tex]

                       [tex]= 0.200T[/tex]

The electric field induced can be represented mathematically as

        [tex]E = \frac{1}{2} [\frac{dB }{dt} ]d_r[/tex]

            [tex]= \frac{d_r}{2} \frac{d}{dt} (B_i + B_1 sin (wt + \o_o))[/tex]

            [tex]= \frac{1}{2} (B wr cos (wt + \o_o))[/tex]

At maximum electric field  [tex]cos (wt + \o_o) = 1[/tex]

        [tex]E_{max} = \frac{1}{2} B_1 wd_r[/tex]

         [tex]E_{max} = \frac{1}{2} B_1 2 \pi f d_r[/tex]

                  [tex]= \frac{1}{2} (0.200) (2 \pi (15 ))(0.014)[/tex]

                 [tex]E_{max}= 0.132V/m[/tex]

                   

           

ACCESS MORE
EDU ACCESS