Answer:
a. [tex]\lambda = 3529nm[/tex]
b. [tex]\nu = 3.416x10^{14}Hz[/tex]
Explanation:
The know the frequency and wavelength it can be used the following equation:
[tex]c = \nu \cdot \lambda[/tex] (1)
Where c is the speed of light, [tex]\nu[/tex] is the frequency and [tex]\lambda[/tex] is the wavelength.
a. What is the wavelength (in nm) of light having a frequency of [tex]8.5 x10^{13} Hz[/tex]?
The speed of light in vacuum has a value of [tex]3x10^{9}m/s[/tex] and in nanometers, [tex]3x10^{17}nm/s[/tex]
Then, [tex]\lambda[/tex] can be isolated from equation 1.
[tex]\lambda = \frac{c}{\nu}[/tex] (2)
[tex]\lambda = \frac{3x10^{17}nm/s}{8.5x10^{13}Hz}[/tex]
But [tex]1Hz = s^{-1}[/tex]
[tex]\lambda = \frac{3x10^{17}nm/s}{8.5x10^{13}s^{-1}}[/tex]
[tex]\lambda = 3529nm[/tex]
b. What is the frequency (in Hz) of light having a wavelength of [tex]8.78 x10^{2} nm[/tex]
[tex]\nu = \frac{c}{\lambda}[/tex] (3)
Notice that it is necessary to express the wavelength in units of meters.
[tex]\lambda = 8.78x10^{2} nm . \frac{1m}{1x10^{9}nm}[/tex] ⇒ [tex]8.78x10^{-7}m[/tex]
Finally, equation 3 can be used.
[tex]\nu = \frac{3x10^{8}m/s}{8.78x10^{-7}m}[/tex]
[tex]\nu = 3.416x10^{14}s^{-1}[/tex]
[tex]\nu = 3.416x10^{14}Hz[/tex]