Answer:
The minimum number of books that should be tested is 312.
Step-by-step explanation:
The (1 - α)% confidence interval for population mean (μ) is:
[tex]CI=\bar x\pm z_{\alpha/2}\times \frac{\sigma}{\sqrt{n}}[/tex]
The margin of error for this interval is:
[tex]MOE= z_{\alpha/2}\times \frac{\sigma}{\sqrt{n}}[/tex]
The information provided is:
MOE = 0.10
σ = 0.90
Confidence level = 95%
Compute the critical value of z as follows:
[tex]z_{\alpha/2}=z_{0.05/2}=z_{0.025}=1.96[/tex]
*Use a z-table.
Compute the value of n as follows:
[tex]MOE= z_{\alpha/2}\times \frac{\sigma}{\sqrt{n}}[/tex]
[tex]n=[\frac{z_{\alpha/2}\times \sigma}{MOE} ]^{2}[/tex]
[tex]=[\frac{1.96\times 0.90}{0.10}]^{2}[/tex]
[tex]=(17.64)^{2}\\=311.1696\\\approx312[/tex]
Thus, the minimum number of books that should be tested is 312.