Respuesta :
Answer:
a.70000 W
b. 8.9 x [tex]10^{10}[/tex] W/m²
Explanation:
a. In order to find power of one laser pulse:
P= U/Δt
where,
U=light energy
Δt=laser pulse
P=1.4 x [tex]10^{-3}[/tex]/20 x [tex]10^{-9}[/tex]=>70000 W
b. Given:
Radius: 5 x [tex]10^{-4}[/tex]
Intensity of light wave is given by
I= P/a (a=πr²)
where I is intensity and P is the power through an area a
I= 70000 / π(5 x [tex]10^{-4}[/tex])²
I= 8.9 x [tex]10^{10}[/tex] W/m²
Answer:
a) 7*10^4 W
b) 8.91*10^10 W/m²
Explanation:
Given
Diameter of the beam, d = 1*10^-3 m
Wavelength of the beam, λ = 193 nm
Time of each pulse, t = 20 ns
Energy of each pulse, U = 1.4 mJ
Using the formula,
P = U/Δt
P = 1.4*10^-3 / 20*10^-9
P = 7*10^4 W
Again, using the formula,
I = P/a, where
a = πd²/4
a = 3.142 * (1*10^-3)²/ 4
a = 3.142 * 2.5*10^-7
a = 7.855*10^-7, thus
I = 7*10^4 / 7.855*10^-7
I = 8.91*10^10 W/m²
Therefore, the power of one laser pulse and the intensity of the light wave is 7*10^4 W and 8.91*10^10 W/m² respectively
