Respuesta :

Answer:

11) [tex]\frac{3\sqrt{5}}{2}[/tex]

12) [tex]4\sqrt{5}[/tex]

13) [tex]22[/tex]

14) [tex]18[/tex]

15) [tex]2[/tex]

16) [tex]24\sqrt{3}[/tex]

Step-by-step explanation:

For these problems I used the pythagorean theorem: [tex]a^{2}+ b^{2}= c^{2}[/tex] and SOHCAHTOA

Sin = [tex]\frac{opposite}{hypotenuse}[/tex]

Cos = [tex]\frac{adjacent}{hypotenuse}[/tex]

Tan = [tex]\frac{opposite}{hypotenuse}[/tex]

11)

First find the length of the bottom side by using Cos

[tex]cos(60)=\frac{x}{3}[/tex]

[tex]3(cos(60))=x[/tex]

[tex]1.5=x[/tex]

Then plug it into the formula for the pythagorean theorem to find the hypotenuse

[tex]3^{2}+ 1.5^{2}= c^{2}[/tex]

[tex]9+2.25=c^{2}[/tex]

[tex]\sqrt{11.25}=\sqrt{c^{2}}[/tex]

[tex]\frac{3\sqrt{5}}{2}[/tex]

12)

Find the length of the bottom side using Cos

[tex]cos(60)=\frac{x}{8}[/tex]

[tex]8(cos(60))=x[/tex]

[tex]4=x[/tex]

Then plug it into the formula for the pythagorean theorem to find the hypotenuse

[tex]8^{2}+ 4^{2}= c^{2}[/tex]

[tex]64+16=c^{2}[/tex]

[tex]\sqrt{80} =\sqrt{c^{2} }[/tex]

[tex]4\sqrt{5}[/tex]

13)

Find the length of the other side by using Tan

[tex]tan(30)=\frac{x}{11\sqrt{3} }[/tex]

[tex]11\sqrt{3}* (tan(30)=x[/tex]

[tex]11=x[/tex]

Then plug it into the formula for the pythagorean theorem to find the hypotenuse

[tex](11\sqrt{3}) ^{2}+ 11^{2}= c^{2}[/tex]

[tex]363+121=c^{2}[/tex]

[tex]\sqrt{484} =\sqrt{c^{2}}[/tex]

[tex]22[/tex]

14)

(This is probably an easier way to do these problems)

Find the hypotenuse by using Cos ([tex]\frac{adjacent}{hypotenuse}[/tex])

[tex]cos(60)=\frac{9}{x}[/tex]

[tex]cos(60)x=9[/tex]

[tex]x=\frac{9}{cos(60)}[/tex]

[tex]x=18[/tex]

15)

Find the hypotenuse using Sin ([tex]\frac{opposite}{hypotenuse}[/tex])

[tex]sin(30)=\frac{1}{x}[/tex]

[tex]sin(30)x=1\\x=\frac{1}{sin(x)}[/tex]

[tex]x=2[/tex]

16)

Find the hypotenuse using Cos ([tex]\frac{adjacent}{hypotenuse}[/tex])

[tex]cos(60)=\frac{12\sqrt{3} }{x}[/tex]

[tex]cos(60)x=12\sqrt{3}[/tex]

[tex]x=\frac{12\sqrt{3} }{cos(60)}[/tex]

[tex]x=24\sqrt{3}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico