Finding Hypotenuse Lengths. Find the length of the hypotenuse.

Answer:
11) [tex]\frac{3\sqrt{5}}{2}[/tex]
12) [tex]4\sqrt{5}[/tex]
13) [tex]22[/tex]
14) [tex]18[/tex]
15) [tex]2[/tex]
16) [tex]24\sqrt{3}[/tex]
Step-by-step explanation:
For these problems I used the pythagorean theorem: [tex]a^{2}+ b^{2}= c^{2}[/tex] and SOHCAHTOA
Sin = [tex]\frac{opposite}{hypotenuse}[/tex]
Cos = [tex]\frac{adjacent}{hypotenuse}[/tex]
Tan = [tex]\frac{opposite}{hypotenuse}[/tex]
11)
First find the length of the bottom side by using Cos
[tex]cos(60)=\frac{x}{3}[/tex]
[tex]3(cos(60))=x[/tex]
[tex]1.5=x[/tex]
Then plug it into the formula for the pythagorean theorem to find the hypotenuse
[tex]3^{2}+ 1.5^{2}= c^{2}[/tex]
[tex]9+2.25=c^{2}[/tex]
[tex]\sqrt{11.25}=\sqrt{c^{2}}[/tex]
[tex]\frac{3\sqrt{5}}{2}[/tex]
12)
Find the length of the bottom side using Cos
[tex]cos(60)=\frac{x}{8}[/tex]
[tex]8(cos(60))=x[/tex]
[tex]4=x[/tex]
Then plug it into the formula for the pythagorean theorem to find the hypotenuse
[tex]8^{2}+ 4^{2}= c^{2}[/tex]
[tex]64+16=c^{2}[/tex]
[tex]\sqrt{80} =\sqrt{c^{2} }[/tex]
[tex]4\sqrt{5}[/tex]
13)
Find the length of the other side by using Tan
[tex]tan(30)=\frac{x}{11\sqrt{3} }[/tex]
[tex]11\sqrt{3}* (tan(30)=x[/tex]
[tex]11=x[/tex]
Then plug it into the formula for the pythagorean theorem to find the hypotenuse
[tex](11\sqrt{3}) ^{2}+ 11^{2}= c^{2}[/tex]
[tex]363+121=c^{2}[/tex]
[tex]\sqrt{484} =\sqrt{c^{2}}[/tex]
[tex]22[/tex]
14)
(This is probably an easier way to do these problems)
Find the hypotenuse by using Cos ([tex]\frac{adjacent}{hypotenuse}[/tex])
[tex]cos(60)=\frac{9}{x}[/tex]
[tex]cos(60)x=9[/tex]
[tex]x=\frac{9}{cos(60)}[/tex]
[tex]x=18[/tex]
15)
Find the hypotenuse using Sin ([tex]\frac{opposite}{hypotenuse}[/tex])
[tex]sin(30)=\frac{1}{x}[/tex]
[tex]sin(30)x=1\\x=\frac{1}{sin(x)}[/tex]
[tex]x=2[/tex]
16)
Find the hypotenuse using Cos ([tex]\frac{adjacent}{hypotenuse}[/tex])
[tex]cos(60)=\frac{12\sqrt{3} }{x}[/tex]
[tex]cos(60)x=12\sqrt{3}[/tex]
[tex]x=\frac{12\sqrt{3} }{cos(60)}[/tex]
[tex]x=24\sqrt{3}[/tex]