Respuesta :

Answer:

[tex]x = \frac{12-t}{4}[/tex] and [tex]y = \frac{t - 3}{3}[/tex]

Step-by-step explanation:

The slope of the line is:

[tex]m = \frac{-8-0}{6-0}[/tex]

[tex]m = -\frac{4}{3}[/tex]

The slope-intercept formula of the line is:

[tex]y + 1 = -\frac{4}{3}\cdot (x - 9)[/tex]

[tex]y + 1 = -\frac{4}{3}\cdot x +12[/tex]

A possible choice is:

[tex]3\cdot y + 3 = -4 \cdot x + 12[/tex]

[tex]t = 3\cdot y + 3 = -4\cdot x + 12[/tex]

[tex]3\cdot y = t - 3[/tex]

[tex]y = \frac{t - 3}{3}[/tex]

[tex]-4\cdot x = t - 12[/tex]

[tex]x = \frac{12-t}{4}[/tex]

The parametric equation for the line parallel to r = (6,-8) and passing through P (9, -1) is:

[tex]x = \frac{12-t}{4}[/tex] and [tex]y = \frac{t - 3}{3}[/tex]

Answer:

x=6t+9

y=-8t-1

Step-by-step explanation:

That's what the show me video said

ACCESS MORE
EDU ACCESS
Universidad de Mexico