Respuesta :
Answer:
[tex]x = \frac{12-t}{4}[/tex] and [tex]y = \frac{t - 3}{3}[/tex]
Step-by-step explanation:
The slope of the line is:
[tex]m = \frac{-8-0}{6-0}[/tex]
[tex]m = -\frac{4}{3}[/tex]
The slope-intercept formula of the line is:
[tex]y + 1 = -\frac{4}{3}\cdot (x - 9)[/tex]
[tex]y + 1 = -\frac{4}{3}\cdot x +12[/tex]
A possible choice is:
[tex]3\cdot y + 3 = -4 \cdot x + 12[/tex]
[tex]t = 3\cdot y + 3 = -4\cdot x + 12[/tex]
[tex]3\cdot y = t - 3[/tex]
[tex]y = \frac{t - 3}{3}[/tex]
[tex]-4\cdot x = t - 12[/tex]
[tex]x = \frac{12-t}{4}[/tex]
The parametric equation for the line parallel to r = (6,-8) and passing through P (9, -1) is:
[tex]x = \frac{12-t}{4}[/tex] and [tex]y = \frac{t - 3}{3}[/tex]
Answer:
x=6t+9
y=-8t-1
Step-by-step explanation:
That's what the show me video said