Answer:
a) [tex]\frac{dA}{dt} = \pi 2r \frac{dr}{dt}[/tex]
b) area of the spill increasing when the radius is 23 m
[tex]\frac{dA}{dt} = 46\pi m/s[/tex]
Step-by-step explanation:
Explanation:-
a)
Given 'A' is the area of a circle with radius 'r'
The area of the circle [tex]A = \pi r^{2}[/tex] ..(I)
Differentiating equation (I) with respective to 't'
[tex]\frac{dA}{dt} = \pi 2r \frac{dr}{dt}[/tex]
b)
If the radius of the oil spill increases at a constant rate of 1 m/s
Given the radius r= 23m
Area of the spill increasing when the radius is 23 m
[tex]\frac{dA}{dt} = \pi (2)(23) (1) =46\pi m/s[/tex]