Respuesta :
Answer:
c = 0.165
Step-by-step explanation:
Given:
f(x, y) = cx y(1 + y) for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 3,
f(x, y) = 0 otherwise.
Required:
The value of c
To find the value of c, we make use of the property of a joint probability distribution function which states that
[tex]\int\limits^a_b \int\limits^a_b {f(x,y)} \, dy \, dx = 1[/tex]
where a and b represent -infinity to +infinity (in other words, the bound of the distribution)
By substituting cx y(1 + y) for f(x, y) and replacing a and b with their respective values, we have
[tex]\int\limits^3_0 \int\limits^3_0 {cxy(1+y)} \, dy \, dx = 1[/tex]
Since c is a constant, we can bring it out of the integral sign; to give us
[tex]c\int\limits^3_0 \int\limits^3_0 {xy(1+y)} \, dy \, dx = 1[/tex]
Open the bracket
[tex]c\int\limits^3_0 \int\limits^3_0 {xy+xy^{2} } \, dy \, dx = 1[/tex]
Integrate with respect to y
[tex]c\int\limits^3_0 {\frac{xy^{2}}{2} +\frac{xy^{3}}{3} } \, dx (0,3}) = 1[/tex]
Substitute 0 and 3 for y
[tex]c\int\limits^3_0 {(\frac{x* 3^{2}}{2} +\frac{x * 3^{3}}{3} ) - (\frac{x* 0^{2}}{2} +\frac{x * 0^{3}}{3})} \, dx = 1[/tex]
[tex]c\int\limits^3_0 {(\frac{x* 9}{2} +\frac{x * 27}{3} ) - (0 +0) \, dx = 1[/tex]
[tex]c\int\limits^3_0 {(\frac{9x}{2} +\frac{27x}{3} ) \, dx = 1[/tex]
Add fraction
[tex]c\int\limits^3_0 {(\frac{27x + 54x}{6}) \, dx = 1[/tex]
[tex]c\int\limits^3_0 {\frac{81x}{6} \, dx = 1[/tex]
Rewrite;
[tex]c\int\limits^3_0 (81x * \frac{1}{6}) \, dx = 1[/tex]
The [tex]\frac{1}{6}[/tex] is a constant, so it can be removed from the integral sign to give
[tex]c * \frac{1}{6}\int\limits^3_0 (81x ) \, dx = 1[/tex]
[tex]\frac{c}{6}\int\limits^3_0 (81x ) \, dx = 1[/tex]
Integrate with respect to x
[tex]\frac{c}{6} * \frac{81x^{2}}{2} (0,3) = 1[/tex]
Substitute 0 and 3 for x
[tex]\frac{c}{6} * \frac{81 * 3^{2} - 81 * 0^{2}}{2} = 1[/tex]
[tex]\frac{c}{6} * \frac{81 * 9 - 0}{2} = 1[/tex]
[tex]\frac{c}{6} * \frac{729}{2} = 1[/tex]
[tex]\frac{729c}{12} = 1[/tex]
Multiply both sides by [tex]\frac{12}{729}[/tex]
[tex]c = \frac{12}{729}[/tex]
[tex]c = 0.0165 (Approximately)[/tex]
