Answer:
[tex]I_d = -3.454*10^{-10} \ \ (sin ( \ 170 \ t))[/tex]
Explanation:
The displacement current [tex]I_d[/tex] is given by the expression;
[tex]I_d = \epsilon _o \frac{d \phi _ E }{dt}[/tex]
where
[tex]\phi _ E = A.E \\ \\ \\\phi _E = A. \frac{V}{d} \\ \\ \\\phi _E = \frac{A}{d}(14*10^{-3})(cos \ 170 \ t ) \\ \\ \\\phi _E = \frac{820*10^{-4}}{5*10^{-3}} * (14*10^{-3})(cos \ 170 \ t ) \\ \\ \\\phi _E = 2296*10^{-4} (cos \ 170 \ t)[/tex]
[tex]I_d = \epsilon _o \frac{d \phi _ E }{dt}[/tex]
[tex]I_d = 8.85*10^{-12}(2296*10^{-4})(-170)(sin(170 \ t))[/tex]
[tex]I_d = -3.454*10^{-10} \ \ (sin ( \ 170 \ t))[/tex]