Answer:
[tex]\dot W_{in} = 273.69\,kW[/tex]
Explanation:
The pump is modelled after the First Law of Thermodynamics. A reversible process means that fluid does not report any positive change in entropy:
[tex]\dot W_{in} + \dot m \cdot (h_{in}-h_{out}) = 0[/tex]
The properties of the fluid at entrance and exit are, respectively:
Inlet (Saturated Liquid)
[tex]P = 20\,kPa[/tex]
[tex]T = 60.06\,^{\textdegree}C[/tex]
[tex]h = 251.42\,\frac{kJ}{kg}[/tex]
[tex]s = 0.8320\,\frac{kJ}{kg\cdot K}[/tex]
Outlet (Subcooled Liquid)
[tex]P = 6000\,kPa[/tex]
[tex]T = 60.06\,^{\textdegree}C[/tex]
[tex]h = 257.502\,\frac{kJ}{kg}[/tex]
[tex]s = 0.8320\,\frac{kJ}{kg\cdot K}[/tex]
The power input to the pump is computed hereafter:
[tex]\dot W_{in} = \left(45\,\frac{kg}{s} \right)\cdot \left(257.502\,\frac{kJ}{kg} -251.42\,\frac{kJ}{kg} \right)[/tex]
[tex]\dot W_{in} = 273.69\,kW[/tex]