Consider the malate dehydrogenase reaction from the citric acid cycle. Given the listed concentrations, calculate the free energy change for this reaction at energy change for this reaction at 37.0 ∘C37.0 ∘C (310 K). ΔG∘′ΔG∘′ for the reaction is +29.7 kJ/mol+29.7 kJ/mol . Assume that the reaction occurs at pH 7. [malate]=1.37 mM [malate]=1.37 mM [oxaloacetate]=0.130 mM [oxaloacetate]=0.130 mM [NAD+]=490 mM [NAD+]=490 mM [NADH]=2.0×102 mM

Respuesta :

Answer: The Gibbs free energy of the reaction is 21.32 kJ/mol

Explanation:

The chemical equation follows:

[tex]\text{Malate }+NAD^+\rightleftharpoons \text{Oxaloacetate }+NADH[/tex]

The equation used to Gibbs free energy of the reaction follows:

[tex]\Delta G=\Delta G^o+RT\ln K_{eq}[/tex]

where,

[tex]\Delta G[/tex] = free energy of the reaction

[tex]\Delta G^o[/tex] = standard Gibbs free energy = 29.7 kJ/mol = 29700 J/mol  (Conversion factor: 1 kJ = 1000 J)

R = Gas constant = 8.314J/K mol

T = Temperature = [tex]37^oC=[273+37]K=310K[/tex]

[tex]K_{eq}[/tex] = Ratio of concentration of products and reactants = [tex]\frac{\text{[Oxaloacetate]}[NADH]}{\text{[Malate]}[NAD^+]}[/tex]

[tex]\text{[Oxaloacetate]}=0.130mM[/tex]

[tex][NADH]=2.0\times 10^2mM[/tex]

[tex]\text{[Malate]}=1.37mM[/tex]

[tex][NAD^+]=490mM[/tex]

Putting values in above expression, we get:

[tex]\Delta G=29700J/mol+(8.314J/K.mol\times 310K\times \ln (\frac{0.130\times 2.0\times 10^2}{1.37\times 490}))\\\\\Delta G=21320.7J/mol=21.32kJ/mol[/tex]

Hence, the Gibbs free energy of the reaction is 21.32 kJ/mol

RELAXING NOICE
Relax