Answer:
[tex]t \approx 4942.105\,years[/tex]
Step-by-step explanation:
The half-life of the carbon-14 is 5730 years. The decay model for an isotope is:
[tex]\frac{m}{m_{o}} = e^{-\frac{t}{\tau} }[/tex]
The time constant of the carbon-14 is:
[tex]\tau = \frac{5730\,years}{\ln 2}[/tex]
[tex]\tau = 8266.643\,years[/tex]
The time of the artifact is:
[tex]\ln \frac{m}{m_{o}} = -\frac{t}{\tau}[/tex]
[tex]t = -\tau \cdot \ln \frac{m}{m_{o}}[/tex]
[tex]t = - (8266.643\,years)\cdot \ln 0.55[/tex]
[tex]t \approx 4942.105\,years[/tex]