Answer : The mass of [tex]O_2[/tex] occupy 30.3 L under the same conditions will be, 24.9 grams.
Explanation :
First we have to calculate the moles of [tex]O_2[/tex]
[tex]\text{Moles of }O_2=\frac{\text{Given mass }O_2}{\text{Molar mass }O_2}=\frac{5.12g}{32g/mol}=0.16mol[/tex]
Now we have to calculate the moles of [tex]O_2[/tex] in 30.3 L by using Avogadro's law.
Avogadro's law : It is defined as the volume of gas is directly proportional to the number of moles of gas at constant pressure and temperature.
[tex]V\propto n[/tex]
or,
[tex]\frac{V_1}{n_1}=\frac{V_2}{n_2}[/tex]
where,
[tex]V_1[/tex] = initial volume of gas = 6.21 L
[tex]V_2[/tex] = final volume of gas = 30.3 L
[tex]n_1[/tex] = initial moles of gas = 0.16 mol
[tex]n_2[/tex] = final temperature of gas = ?
Now put all the given values in the above equation, we get:
[tex]\frac{6.21L}{0.16mol}=\frac{30.3L}{n_2}[/tex]
[tex]n_2=0.781mol[/tex]
Now we have to calculate the mass of [tex]O_2[/tex]
[tex]\text{ Mass of }O_2=\text{ Moles of }O_2\times \text{ Molar mass of }O_2[/tex]
Molar mass of [tex]O_2[/tex] = 32 g/mol
[tex]\text{ Mass of }O_2=(0.781moles)\times (32g/mole)=24.9g[/tex]
Therefore, the mass of [tex]O_2[/tex] occupy 30.3 L under the same conditions will be, 24.9 grams.