Respuesta :
Answer:
The predicted diastolic blood pressure of people with 113 mm Hg systolic blood pressure is 74 mm Hg.
Step-by-step explanation:
The general form of a regression equation is:
[tex]y=\alpha +\beta x[/tex]
Here,
y = dependent variable
x = independent variable
α = intercept
β = slope
The formula to compute the slope and intercept are:
[tex]\begin{aligned} \alpha &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \\\\\beta &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \end{aligned}[/tex]
The value of [tex]\sum X,\ \sum Y,\ \sum XY\ and\ \sum X^{2}[/tex] as compute in the table attached below.
Compute the value of α and β as follows:
[tex]\begin{aligned} \alpha &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 690 \cdot 134965 - 1035 \cdot 90064}{ 8 \cdot 134965 - 1035^2} \approx -10.64 \\ \\\beta &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 8 \cdot 90064 - 1035 \cdot 690 }{ 8 \cdot 134965 - \left( 1035 \right)^2} \approx 0.749\end{aligned}[/tex]
Thus, the regression equation of diastolic blood pressure based on systolic blood pressure is:
[tex]y=-10.64+0.749x[/tex]
Compute the value of y for x = 113 as follows:
[tex]y=-10.64+0.749x[/tex]
[tex]=-10.64+0.749\times 113\\=-10.64+84.637\\=73.997\\\approx 74[/tex]
Thus, the predicted diastolic blood pressure of people with 113 mm Hg systolic blood pressure is 74 mm Hg.
![Ver imagen warylucknow](https://us-static.z-dn.net/files/d11/6bd1c3c2c67d2147c66936e09cb0d858.png)